
18

Polynomial arithmetic and applications

In this chapter, we study algorithms for performing arithmetic on poly-
nomials. Initially, we shall adopt a very general point of view, discussing
polynomials whose coefficients lie in an arbitrary ring R, and then specialize
to the case where the coefficient ring is a field F .

There are many similarities between arithmetic in Z and in R[X], and the
similarities between Z and F [X] run even deeper. Many of the algorithms
we discuss in this chapter are quite similar to the corresponding algorithms
for integers.

As we did in Chapter 15 for matrices, we shall treat R as an “abstract
data type,” and measure the complexity of algorithms for polynomials over
a ring R by counting “operations in R.”

18.1 Basic arithmetic

Throughout this section, R denotes a non-trivial ring.
For computational purposes, we assume that a polynomial a =∑k−1
i=0 aiXi ∈ R[X] is represented as a coefficient vector (a0, a1, . . . , ak−1).

Further, when a is non-zero, the coefficient ak−1 should be non-zero.
The basic algorithms for addition, subtraction, multiplication, and divi-

sion of polynomials are quite straightforward adaptations of the correspond-
ing algorithms for integers. In fact, because of the lack of “carries,” these
algorithms are actually much simpler in the polynomial case. We briefly
discuss these algorithms here—analogous to our treatment of integer arith-
metic, we do not discuss the details of “stripping” leading zero coefficients.

For addition and subtraction, all we need to do is to add or subtract
coefficient vectors.

For multiplication, let a =
∑k−1

i=0 aiXi ∈ R[X] and b =
∑`−1

i=0 biX
i ∈ R[X],

398

18.1 Basic arithmetic 399

where k ≥ 1 and ` ≥ 1. The product c := a ·b is of the form c =
∑k+`−2

i=0 ciXi,
and can be computed using O(k`) operations in R as follows:

for i← 0 to k + `− 2 do ci ← 0
for i← 0 to k − 1 do

for j ← 0 to `− 1 do
ci+j ← ci+j + ai · bj

For division, let a =
∑k−1

i=0 aiXi ∈ R[X] and b =
∑`−1

i=0 biX
i ∈ R[X], where

b`−1 ∈ R∗. We want to compute polynomials q, r ∈ R[X] such that a = bq+r,
where deg(r) < `−1. If k < `, we can simply set q ← 0 and r ← a; otherwise,
we can compute q and r using O(` · (k − ` + 1)) operations in R using the
following algorithm:

t← b−1
`−1 ∈ R

for i← 0 to k − 1 do ri ← ai

for i← k − ` down to 0 do
qi ← t · ri+`−1

for j ← 0 to `− 1 do
ri+j ← ri+j − qi · bj

q ←
∑k−`

i=0 qiX
i, r ←

∑`−2
i=0 riX

i

With these simple algorithms, we obtain the polynomial analog of The-
orem 3.3. Let us define the length of a ∈ R[X], denoted len(a), to be the
length of its coefficient vector; more precisely, we define

len(a) :=
{

deg(a) + 1 if a 6= 0,
1 if a = 0.

It is sometimes more convenient to state the running times of algorithms in
terms of len(a), rather than deg(a) (the latter has the inconvenient habit of
taking on the value 0, or worse, −∞).

Theorem 18.1. Let a and b be arbitrary polynomials in R[X].

(i) We can compute a± b with O(len(a) + len(b)) operations in R.

(ii) We can compute a · b with O(len(a) len(b)) operations in R.

(iii) If b 6= 0 and lc(b) is a unit in R, we can compute q, r ∈ R[X] such
that a = bq + r and deg(r) < deg(b) with O(len(b) len(q)) operations
in R.

Analogous to algorithms for modular integer arithmetic, we can also do
arithmetic in the residue class ring R[X]/(n), where n ∈ R[X] is a polynomial

400 Polynomial arithmetic and applications

of degree ` > 0 whose leading coefficient lc(n) is a unit (in most applications,
we may in fact assume that n is monic). For α ∈ R[X]/(n), there exists a
unique polynomial a ∈ R[X] with deg(a) < ` and α = [a]n; we call this
polynomial a the canonical representative of α, and denote it by rep(α).
For computational purposes, we represent elements of R[X]/(n) by their
canonical representatives.

With this representation, addition and subtraction in R[X]/(n) can be
performed using O(`) operations in R, while multiplication takes O(`2) op-
erations in R.

The repeated-squaring algorithm for computing powers works equally well
in this setting: given α ∈ R[X]/(n) and a non-negative exponent e, we can
compute αe using O(len(e)) multiplications in R[X]/(n), and so a total of
O(len(e) `2) operations in R.

The following exercises deal with arithmetic with polynomials R[X] over
a ring R.

Exercise 18.1. State and re-work the polynomial analog of Exercise 3.22.

Exercise 18.2. State and re-work the polynomial analog of Exercise 3.23.
Assume n1, . . . , nk are monic polynomials.

Exercise 18.3. Given a polynomial g ∈ R[X] and an element α ∈ E, where
R is a subring of E, we may wish to compute g(α) ∈ E. A particularly
elegant and efficient way of doing this is called Horner’s rule. Suppose
g =

∑k−1
i=0 giXi, where k ≥ 0 and gi ∈ R for i = 0, . . . , k − 1. Horner’s rule

computes g(α) as follows:

β ← 0E

for i← k − 1 down to 0 do
β ← β · α+ ai

output β

Show that this algorithm correctly computes g(α) using k multiplications in
E and k additions in E.

Exercise 18.4. Let f ∈ R[X] be a monic polynomial of degree ` > 0, and
let E := R[X]/(f). Suppose that in addition to f , we are given a polynomial
g ∈ R[X] of degree less than k and an element α ∈ E, and we want to
compute g(α) ∈ E.

(a) Show that a straightforward application of Horner’s rule yields an
algorithm that uses O(k`2) operations in R, and requires space for
storing O(`) elements of R.

18.2 Computing minimal polynomials in F [X]/(f) (I) 401

(b) Show how to compute g(α) using just O(k` + k1/2`2) operations in
R, at the expense of requiring space for storing O(k1/2`) elements of
R. Hint: first compute a table of powers 1, α, . . . , αm, for m ≈ k1/2.

Exercise 18.5. Given polynomials g, h ∈ R[X], show how to compute the
composition g(h) ∈ R[X] using O(len(g)2 len(h)2) operations in R.

Exercise 18.6. Suppose you are given three polynomials f, g, h ∈ Zp[X],
where p is a large prime, in particular, p ≥ 2 deg(g) deg(h). Design an
efficient probabilistic algorithm that tests if f = g(h) (i.e., if f equals g
composed with h). Your algorithm should have the following properties: if
f = g(h), it should always output “true,” and otherwise, it should output
“false” with probability at least 0.999. The expected running time of your
algorithm should be O((len(f) + len(g) + len(h)) len(p)2).

18.2 Computing minimal polynomials in F [X]/(f) (I)

In this section, we shall examine a computational problem to which we
shall return on several occasions, as it will serve to illustrate a number of
interesting algebraic and algorithmic concepts.

Let F be a field, f ∈ F [X] a monic polynomial of degree ` > 0, and let
E := F [X]/(f). E is an F -algebra, and in particular, an F -vector space.
As an F -vector space, it has dimension `. Suppose we are given an element
α ∈ E, and want to efficiently compute the minimal polynomial of α over F ,
that is, the monic polynomial φ ∈ F [X] of least degree such that φ(α) = 0,
which we know has degree at most ` (see §17.5).

We can solve this problem using polynomial arithmetic and Gaussian
elimination, as follows. Consider the F -linear map ρ : F [X]≤` → E that
sends a polynomial h ∈ F [X] of degree at most ` to h(α). Let us fix ordered
bases for F [X]≤` and E: for F [X]≤`, let us take X`, X`−1, . . . , 1, and for E, let
us take 1, η, . . . , η`−1, where η := [X]f ∈ E. The matrix A representing the
map ρ (via multiplication on the right by A), is the (` + 1) × ` matrix A

whose ith row, for i = 1, . . . , `+ 1, is the coordinate vector of α`+1−i.
We apply Gaussian elimination to A to find a set of row vectors v1, . . . , vs

that are coordinate vectors for a basis for the kernel of ρ. Now, the co-
ordinate vector of the minimal polynomial of α is a linear combination of
v1, . . . , vs. To find it, we form the s× (` + 1) matrix B whose rows consist
of v1, . . . , vs, and apply Gaussian elimination to B, obtaining an s× (`+ 1)
matrix B′ in reduced row echelon form whose row space is the same as that
of B. Let g be the polynomial whose coordinate vector is the last row of
B′. Because of the choice of ordered basis for F [X]≤`, and because B′ is in

402 Polynomial arithmetic and applications

reduced row echelon form, it is clear that no non-zero polynomial in ker(ρ)
has degree less than that of g. Moreover, as g is already monic (again, by
the fact that B′ is in reduced row echelon form), it follows that g is in fact
the minimal polynomial of α over F .

The total amount of work performed by this algorithm is O(`3) opera-
tions in F to build the matrix A (this just amounts to computing ` suc-
cessive powers of α, that is, O(`) multiplications in E, each of which takes
O(`2) operations in F), and O(`3) operations in F to perform both Gaussian
elimination steps.

18.3 Euclid’s algorithm

In this section, F denotes a field, and we consider the computation of great-
est common divisors in F [X].

The basic Euclidean algorithm for integers is easily adapted to compute
gcd(a, b), for polynomials a, b ∈ F [X]. Analogous to the integer case, we
assume that deg(a) ≥ deg(b); however, we shall also assume that a 6= 0.
This is not a serious restriction, of course, as gcd(0, 0) = 0, and making
this restriction will simplify the presentation a bit. Recall that we defined
gcd(a, b) to be either zero or monic, and the assumption that a 6= 0 means
that gcd(a, b) is non-zero, and hence monic.

The following is the analog of Theorem 4.1.

Theorem 18.2. Let a, b ∈ F [X], with deg(a) ≥ deg(b) and a 6= 0. Define
the polynomials r0, r1, . . . , r`+1 ∈ F [X], and q1, . . . , q` ∈ F [X], where ` ≥ 0,
as follows:

a = r0,

b = r1,

r0 = r1q1 + r2 (0 ≤ deg(r2) < deg(r1)),
...

ri−1 = riqi + ri+1 (0 ≤ deg(ri+1) < deg(ri)),
...

r`−2 = r`−1q`−1 + r` (0 ≤ deg(r`) < deg(r`−1)),

r`−1 = r`q` (r`+1 = 0).

Note that by definition, ` = 0 if b = 0, and ` > 0 otherwise; moreover,
r` 6= 0.

Then we have r`/ lc(r`) = gcd(a, b), and if b 6= 0, then ` ≤ deg(b) + 1.

18.3 Euclid’s algorithm 403

Proof. Arguing as in the proof of Theorem 4.1, one sees that

gcd(a, b) = gcd(r0, r1) = gcd(r`, r`+1) = gcd(r`, 0) = r`/ lc(r`).

That proves the first statement.
For the second statement, if b 6= 0, then the degree sequence

deg(r1),deg(r2), . . . ,deg(r`)

is strictly decreasing, with deg(r`) ≥ 0, from which it follows that deg(b) =
deg(r1) ≥ `− 1. 2

This gives us the following Euclidean algorithm for polynomials, which
takes as input polynomials a, b ∈ F [X] with deg(a) ≥ deg(b) and a 6= 0, and
which produces as output d = gcd(a, b) ∈ F [X].

r ← a, r′ ← b

while r′ 6= 0 do
r′′ ← r mod r′

(r, r′)← (r′, r′′)
d← r/ lc(r) // make monic
output d

Theorem 18.3. Euclid’s algorithm for polynomials uses O(len(a) len(b))
operations in F .

Proof. The proof is almost identical to that of Theorem 4.2. Details are left
to the reader. 2

Just as for integers, if d = gcd(a, b), then aF [X] + bF [X] = dF [X], and so
there exist polynomials s and t such that as + bt = d. The procedure to
calculate s and t is precisely the same as in the integer case; however, in
the polynomial case, we can be much more precise about the relative sizes
of the objects involved in the calculation.

Theorem 18.4. Let a, b, r0, r1, . . . , r`+1 and q1, . . . , q` be as in Theo-
rem 18.2. Define polynomials s0, s1, . . . , s`+1 ∈ F [X] and t0, t1, . . . , t`+1 ∈
F [X] as follows:

s0 := 1, t0 := 0,

s1 := 0, t1 := 1,

and for i = 1, . . . , `,

si+1 := si−1 − siqi, ti+1 := ti−1 − tiqi.

404 Polynomial arithmetic and applications

Then:

(i) for i = 0, . . . , `+ 1, we have sia+ tib = ri; in particular, s`a+ t`b =
lc(r`) gcd(a, b);

(ii) for i = 0, . . . , `, we have siti+1 − tisi+1 = (−1)i;

(iii) for i = 0, . . . , `+ 1, we have gcd(si, ti) = 1;

(iv) for i = 1, . . . , `+ 1, we have

deg(ti) = deg(a)− deg(ri−1),

and for i = 2, . . . , `+ 1, we have

deg(si) = deg(b)− deg(ri−1).

Proof. (i), (ii), and (iii) are proved just as in the corresponding parts of
Theorem 4.3.

For (iv), the proof will hinge on the following facts:

• For i = 1, . . . , `, we have deg(ri−1) ≥ deg(ri), and since qi is the
quotient in dividing ri−1 by ri, we have deg(qi) = deg(ri−1)−deg(ri).

• For i = 2, . . . , `, we have deg(ri−1) > deg(ri).

We prove the statement involving the ti by induction on i, and leave the
proof of the statement involving the si to the reader.

One can see by inspection that this statement holds for i = 1, since
deg(t1) = 0 and r0 = a. If ` = 0, there is nothing more to prove, so assume
that ` > 0 and b 6= 0.

Now, for i = 2, we have t2 = 0− 1 · q1 = −q1. Thus, deg(t2) = deg(q1) =
deg(r0)− deg(r1) = deg(a)− deg(r1).

Now for the induction step. Assume i ≥ 3. Then we have

deg(ti−1qi−1) = deg(ti−1) + deg(qi−1)

= deg(a)− deg(ri−2) + deg(qi−1) (by induction)

= deg(a)− deg(ri−1)

(since deg(qi−1) = deg(ri−2)− deg(ri−1))

> deg(a)− deg(ri−3) (since deg(ri−3) > deg(ri−1))

= deg(ti−2) (by induction).

By definition, ti = ti−2 − ti−1qi−1, and from the above reasoning, we see
that

deg(a)− deg(ri−1) = deg(ti−1qi−1) > deg(ti−2),

from which it follows that deg(ti) = deg(a)− deg(ri−1). 2

18.4 Computing modular inverses and Chinese remaindering 405

Note that part (iv) of the theorem implies that for i = 1, . . . , ` + 1, we
have deg(ti) ≤ deg(a) and deg(si) ≤ deg(b). Moreover, if deg(a) > 0 and
b 6= 0, then ` > 0 and deg(r`−1) > 0, and hence deg(t`) < deg(a) and
deg(s`) < deg(b).

We can easily turn the scheme described in Theorem 18.4 into a simple
algorithm, taking as input polynomials a, b ∈ F [X], such that deg(a) ≥
deg(b) and a 6= 0, and producing as output polynomials d, s, t ∈ F [X] such
that d = gcd(a, b) and as+ bt = d:

r ← a, r′ ← b

s← 1, s′ ← 0
t← 0, t′ ← 1
while r′ 6= 0 do

Compute q, r′′ such that r = r′q + r′′, with deg(r′′) < deg(r′)
(r, s, t, r′, s′, t′)← (r′, s′, t′, r′′, s− s′q, t− t′q)

c← lc(r)
d← r/c, s← s/c, t← t/c // make monic
output d, s, t

Theorem 18.5. The extended Euclidean algorithm for polynomials uses
O(len(a) len(b)) operations in F .

Proof. Exercise. 2

18.4 Computing modular inverses and Chinese remaindering

In this and the remaining sections of this chapter, we explore various appli-
cations of Euclid’s algorithm for polynomials. Most of these applications are
analogous to their integer counterparts, although there are some differences
to watch for. Throughout this section, F denotes a field.

We begin with the obvious application of the extended Euclidean algo-
rithm for polynomials to the problem of computing multiplicative inverses
in F [X]/(n), where n ∈ F [X] with ` := deg(n) > 0.

Given y ∈ F [X] with deg(y) < `, using O(`2) operations in F , we can
determine if y is relatively prime to n, and if so, compute y−1 mod n as
follows. We run the extended Euclidean algorithm on inputs a := n and
b := y, obtaining polynomials d, s, t such that d = gcd(n, y) and ns+yt = d.
If d 6= 1, then y does not have a multiplicative inverse modulo n. Otherwise,
if d = 1, then t is a multiplicative inverse of y modulo n. Moreover, by
Theorem 18.4, and the discussion immediately following, deg(t) < `, and so
t = y−1 mod n.

406 Polynomial arithmetic and applications

If the polynomial n is irreducible, then F [X]/(n) is a field, and the ex-
tended Euclidean algorithm, together with the basic algorithms for addition,
subtraction, and multiplication modulo n, yield efficient algorithms for per-
forming addition, subtraction, multiplication and division in the extension
field F [X]/(n).

We also observe that the Chinese remainder theorem for polynomials
(Theorem 17.17) can be made computationally effective as well:

Theorem 18.6. Given polynomials n1, . . . , nk ∈ F [X] and a1, . . . , ak ∈ F [X],
where n1, . . . , nk are pairwise relatively prime, and where deg(ni) > 0 and
deg(ai) < deg(ni) for i = 1, . . . , k, we can compute the polynomial z ∈ F [X],
such that deg(z) < deg(n) and z ≡ ai (mod ni) for i = 1, . . . , k, where
n :=

∏
i ni, using O(len(n)2) operations in F .

Proof. Exercise (just use the formulas in the proof of Theorem 2.8, which
are repeated below the statement of Theorem 17.17). 2

18.4.1 Chinese remaindering and polynomial interpolation

We remind the reader of the discussion following Theorem 17.17, where the
point was made that when ni = (X − bi) for i = 1, . . . , k, then the Chinese
remainder theorem for polynomials reduces to Lagrange interpolation. Thus,
Theorem 18.6 says that given distinct elements b1, . . . , bk ∈ F , along with
elements a1, . . . , ak ∈ F , we can compute the unique polynomial z ∈ F [X] of
degree less than k such that

z(bi) = ai (i = 1, . . . , k),

using O(k2) operations in F .
It is perhaps worth noting that we could also solve the polynomial interpo-

lation problem using Gaussian elimination, by inverting the corresponding
Vandermonde matrix. However, this algorithm would use O(k3) operations
in F . This is a specific instance of a more general phenomenon: there are
many computational problems involving polynomials over fields that can be
solved using Gaussian elimination, but which can be solved more efficiently
using more specialized algorithmic techniques.

Exercise 18.7. State and re-work the polynomial analog of Exercises 4.3
and 4.4. In the special case of polynomial interpolation, this algorithm is
called Newton interpolation.

18.4 Computing modular inverses and Chinese remaindering 407

18.4.2 Mutual independence and secret sharing

As we also saw in the discussion following Theorem 17.17, for ` ≤ k

and fixed and distinct b1, . . . , b` ∈ F , the “multi-point evaluation” map
σ : F [X]<k → F×` that sends a polynomial z ∈ F [X] of degree less than k to
(z(b1), . . . , z(b`)) ∈ F×` is a surjective F -linear map.

If F is a finite field, then this has the following probabilistic interpreta-
tion: if the coefficient vector (z0, . . . , zk−1) of z is a random variable, uni-
formly distributed over F×k, then the random variable (z(b1), . . . , z(b`)) is
uniformly distributed over F×` (see part (a) of Exercise 8.22). Put another
way, the collection {z(b) : b ∈ F} of random variables is `-wise independent,
where each individual z(b) is uniformly distributed over F . Clearly, given
z and b, we can efficiently compute the value of z(b), so this construction
gives us a nice way to build effectively constructible, `-wise independent
collections of random variables for any `, thus generalizing the construc-
tions in Example 6.17 and Exercise 6.16 of pairwise and 3-wise independent
collections.

As a particular application of this idea, we describe a simple secret shar-
ing scheme. Suppose Alice wants to share a secret among some number
m of parties, call them P1, . . . , Pm, in such a way that if less than k parties
share their individual secret shares with one another, then Alice’s secret is
still well hidden, while any subset of k parties can reconstruct Alice’s secret.

She can do this as follows. Suppose her secret s is (or can be encoded as)
an element of a finite field F , and that b0, b1, . . . , bm are some fixed, distinct
elements of F , where b0 = 0. This presumes, of course, that |F | ≥ m+1. To
share her secret s, Alice chooses z1, . . . , zk−1 ∈ F at random, and sets z0 :=
s. Let z ∈ F [X] be the polynomial whose coefficient vector is (z0, . . . , zk−1);
that is,

z =
k−1∑
i=0

ziX
i.

For i = 1, . . . ,m, Alice gives party Pi its share

ai := z(bi).

For the purposes of analysis, it is convenient to define

a0 := z(b0) = z(0) = z0 = s.

Clearly, if any k parties pool their shares, they can reconstruct Alice’s
secret by interpolating a polynomial of degree less than k at k points—the
constant term of this polynomial is equal to Alice’s secret s.

408 Polynomial arithmetic and applications

It remains to show that Alice’s secret remains well hidden provided less
than k parties pool their shares. To do this, first assume that Alice’s secret
s is uniformly distributed over F , independently of z1, . . . , zk−1 (we will
relax this assumption below). With this assumption, z0, z1, . . . , zk−1 are
independently and uniformly distributed over F . Now consider any subset
of k − 1 parties; to simplify notation, assume the parties are P1, . . . , Pk−1.
Then the random variables a0, a1, . . . , ak−1 are mutually independent. The
variables a1, . . . , ak−1 are of course the shares of P1, . . . , Pk−1, while a0 is
equal to Alice’s secret (the fact that a0 has two interpretations, one as the
value of z at a point, and one as a coefficient of z, plays a crucial role
in the analysis). Because of mutual independence, the distribution of a0,
conditioned on fixed values of the shares a1, . . . , ak−1, is still uniform over
F , and so even by pooling their shares, these k − 1 parties would have
no better chance of guessing Alice’s secret than they would have without
pooling their shares.

Continuing the analysis of the previous paragraph, consider the condi-
tional probability distribution in which we condition on the event that a0 = s

for some specific, fixed value of s ∈ F . Because the z0, z1, . . . , zk−1 were ini-
tially independently and uniformly distributed over F , and because z0 = a0,
in this conditional probability distribution, we have z0 = s and z1, . . . , zk−1

are independently and uniformly distributed over F . So this conditional
probability distribution perfectly models the secret sharing algorithm per-
formed by Alice for a specific secret s, without presuming that s is drawn
from any particular distribution. Moreover, because the a0, a1, . . . , ak−1

were initially independently and uniformly distributed over F , when we con-
dition on the event a0 = s, the variables a1, . . . , ak−1 are still independently
and uniformly distributed over F .

The argument in the previous two paragraphs shows that

for any fixed secret s, the shares a1, . . . , am are (k−1)-wise in-
dependent, with each individual share ai uniformly distributed
over F .

This property ensures that Alice’s secret is perfectly hidden, provided that
less than k parties pool their shares: for any secret s, these parties just see
a bunch of random values in F , with no particular bias that would give any
hint whatsoever as to the actual value of s.

Secret sharing has a number of cryptographic applications, but one simple
motivation is the following. Alice may have some data that she wants to
“back up” on some file servers, who play the role of the parties P1, . . . , Pm.

18.4 Computing modular inverses and Chinese remaindering 409

To do this, Alice gives each server a share of her secret data (if she has a
lot of data, she can break it up into many small blocks, and process each
block separately). If at a later time, Alice wants to restore her data, she
contacts any k servers who will give Alice their shares, from which Alice
can reconstruct the original data. In using a secret sharing scheme in this
way, Alice trusts that the servers are reliable to the extent that they do
not modify the value of their shares (as otherwise, this would cause Alice to
reconstruct the wrong data). We shall discuss later in this chapter how one
can relax this trust assumption. But even with this trust assumption, Alice
does gain something above and beyond the simpler solution of just backing
up her data on a single server, namely:

• even if some of the servers crash, or are otherwise unreachable, she
can still recover her data, as long as at least k are available at the
time she wants to do the recovery;
• even if the data on some (but strictly less than k) of the servers is

“leaked” to some outside attacker, the attacker gains no information
about Alice’s data.

Exercise 18.8. Suppose that Alice shares secrets s1, . . . , st ∈ F with parties
P1, . . . , Pm, so that each Pi has one share of each sj . At a later time,
Alice obtains all the shares held by k of the parties. Show how Alice can
reconstruct all of the secrets s1, . . . , st using O(k2 + tk) operations in F .

Exercise 18.9. Suppose that Alice shares secrets s1, . . . , st ∈ F with parties
P1, . . . , Pm, so that each Pi has one share of each sj . Moreover, Alice does
not want to trust that the parties do not maliciously (or accidentally) modify
their shares. Show that if Alice has a small amount of secure storage, namely,
space for O(m) elements of F that cannot be read or modified by the other
parties, then she can effectively protect herself from malicious parties, so
that if any particular party tries to give her modified shares, Alice will
fail to detect this with probability at most t/|F |. If |F | is very large (say,
|F | = 2128), and t is any realistic value (say, t ≤ 240), this failure probability
will be acceptably small for all practical purposes. Hint: see Exercise 9.12.

18.4.3 Speeding up algorithms via modular computation

In §4.4, we discussed how the Chinese remainder theorem could be used to
speed up certain types of computations involving integers. The example we
gave was the multiplication of integer matrices. We can use the same idea to
speed up certain types of computations involving polynomials. For example,

410 Polynomial arithmetic and applications

if one wants to multiply two matrices whose entries are elements of F [X], one
can use the Chinese remainder theorem for polynomials to speed things up.
This strategy is most easily implemented if F is sufficiently large, so that we
can use polynomial evaluation and interpolation directly, and do not have
to worry about constructing irreducible polynomials. We leave the details
as an exercise.

Exercise 18.10. You are give two matrices A,B ∈ F [X]`×`. All entries of
A and B are polynomials of degree at most M . Assume that |F | ≥ 2M + 1.
Using polynomial evaluation and interpolation, show how to compute the
product matrix C = A ·B using O(`2M2 + `3M) operations in F . Compare
this to the cost of computing C directly, which would be O(`3M2).

18.5 Rational function reconstruction and applications

We next state and prove the polynomial analog of Theorem 4.6. As we are
now “reconstituting” a rational function, rather than a rational number,
we call this procedure rational function reconstruction. Because of
the relative simplicity of polynomials compared to integers, the rational
reconstruction theorem for polynomials is a bit “sharper” than the rational
reconstruction theorem for integers. Throughout this section, F denotes a
field.

Theorem 18.7. Let r∗, t∗ be non-negative integers, and let n, y ∈ F [X] be
polynomials such that r∗ + t∗ ≤ deg(n) and deg(y) < deg(n). Suppose we
run the extended Euclidean algorithm with inputs a := n and b := y. Then,
adopting the notation of Theorem 18.4, the following hold:

(i) There exists a unique index i = 1, . . . , `+ 1, such that deg(ri) < r∗ ≤
deg(ri−1), and for this i, we have ti 6= 0.

Let r′ := ri, s′ := si, and t′ := ti.

(ii) Furthermore, for any polynomials r, s, t ∈ F [X] such that

r = sn+ ty, deg(r) < r∗, 0 ≤ deg(t) ≤ t∗, (18.1)

we have

r = r′α, s = s′α, t = t′α,

for some non-zero polynomial α ∈ F [X].

Proof. By hypothesis, 0 ≤ r∗ ≤ deg(n) = deg(r0). Moreover, since

deg(r0), . . . ,deg(r`),deg(r`+1) = −∞

18.5 Rational function reconstruction and applications 411

is a decreasing sequence, and ti 6= 0 for i = 1, . . . , `+ 1, the first statement
of the theorem is clear.

Now let i be defined as in the first statement of the theorem. Also, let
r, s, t be as in (18.1).

From part (iv) of Theorem 18.4 and the inequality r∗ ≤ deg(ri−1), we
have

deg(ti) = deg(n)− deg(ri−1) ≤ deg(n)− r∗.

From the equalities ri = sin+ tiy and r = sn+ ty, we have the two congru-
ences:

r ≡ ty (mod n),

ri ≡ tiy (mod n).

Subtracting ti times the first from t times the second, we obtain

rti ≡ rit (mod n).

This says that n divides rti−rit; however, using the bounds deg(r) < r∗ and
deg(ti) ≤ deg(n)− r∗, we see that deg(rti) < deg(n), and using the bounds
deg(ri) < r∗, deg(t) ≤ t∗, and r∗ + t∗ ≤ deg(n), we see that deg(rit) <
deg(n); it immediately follows that

deg(rti − rit) < deg(n).

Since n divides rti − rit and deg(rti − rit) < deg(n), the only possibility is
that

rti − rit = 0.

The rest of the proof runs exactly the same as the corresponding part of
the proof of Theorem 4.6, as the reader may easily verify. 2

18.5.1 Application: polynomial interpolation with errors

We now discuss the polynomial analog of the application in §4.5.1.
If we “encode” a polynomial z ∈ F [X], with deg(z) < k, as the sequence

(a1, . . . , ak) ∈ F×k, where ai = z(bi), then we can efficiently recover z from
this encoding, using an algorithm for polynomial interpolation. Here, of
course, the bi are distinct elements of F , and F is a finite field (which must
have at least k elements, of course).

Now suppose that Alice encodes z as (a1, . . . , ak), and sends this encoding
to Bob, but that some, say at most `, of the ai may be corrupted during
transmission. Let (ã1, . . . , ãk) denote the vector actually received by Bob.

412 Polynomial arithmetic and applications

Here is how we can use Theorem 18.7 to recover the original value of z
from (ã1, . . . , ãk), assuming:

• the original polynomial z has degree less than k′,

• at most ` errors occur in transmission, and

• k ≥ 2`+ k′.

Let us set ni := (X− bi) for i = 1, . . . , k, and n := n1 · · ·nk. Now, suppose
Bob obtains the corrupted encoding (ã1, . . . , ãk). Here is what Bob does to
recover z:

1. Interpolate, obtaining a polynomial y, with deg(y) < k and y(bi) = ãi

for i = 1, . . . , k.

2. Run the extended Euclidean algorithm on a := n and b := y, and let
r′, t′ be the values obtained from Theorem 18.7 applied with r∗ :=
k′ + ` and t∗ := `.

3. If t′ | r′, output r′/t′; otherwise, output “error.”

We claim that the above procedure outputs z, under the assumptions
listed above. To see this, let t be the product of the ni for those values of i
where an error occurred. Now, assuming at most ` errors occurred, we have
deg(t) ≤ `. Also, let r := tz, and note that deg(r) < k′ + `. We claim that

r ≡ ty (mod n). (18.2)

To show that (18.2) holds, it suffices to show that

tz ≡ ty (mod ni) (18.3)

for all i = 1, . . . , k. To show this, consider first an index i at which no
error occurred, so that ai = ãi. Then tz ≡ tai (mod ni) and ty ≡ tãi ≡
tai (mod ni), and so (18.3) holds for this i. Next, consider an index i

for which an error occurred. Then by construction, tz ≡ 0 (mod ni) and
ty ≡ 0 (mod ni), and so (18.3) holds for this i. Thus, (18.2) holds, from
which it follows that the values r′, t′ obtained from Theorem 18.7 satisfy

r′

t′
=
r

t
=
tz

t
= z.

One easily checks that both the procedures to encode and decode a value z
run in time O(k2). The above scheme is an example of an error correcting
code called a Reed–Solomon code. Note that we are completely free to
choose the finite field F however we want, just so long as it is big enough.
An attractive choice in some settings is to choose F = Z2[Y]/(f), where
f ∈ Z2[Y] is an irreducible polynomial; with this choice, elements of F may
be encoded as bit strings of length deg(f).

18.5 Rational function reconstruction and applications 413

One can combine the above error correction technique with the idea of
secret sharing (see §18.4.2) to obtain a secret sharing scheme that is robust,
even in the presence of erroneous (as opposed to just missing) shares. More
precisely, Alice can share a secret s ∈ F among parties P1, . . . , Pm, in such
a way that (1) if less than k′ parties pool their shares, Alice’s secret remains
well hidden, and (2) from any k shares, we can correctly reconstruct Alice’s
secret, provided at most ` of the shares are incorrect, and k ≥ 2` + k′.
To do this, Alice chooses z1, . . . , zk′−1 ∈ F at random, sets z0 := s, and
z :=

∑k′−1
i=0 ziXi ∈ F [X], and computes the ith share as ai := z(bi), for

i = 1, . . . ,m. Here, we assume that the bi are distinct, non-zero elements of
F . Now, just as in §18.4.2, as long as less than k′ parties pool their shares,
Alice’s secret remains well hidden; however, provided k ≥ 2` + k′, we can
correctly and efficiently reconstruct Alice’s secret given any k values ãi, as
long as at most ` of the ãi differ from the corresponding value of ai.

18.5.2 Application: recovering rational functions from their

reversed formal Laurent series

We now discuss the polynomial analog of the application in §4.5.2. This is an
entirely straightforward translation of the results in §4.5.2, but we shall see
in the next chapter that this problem has its own interesting applications.

Suppose Alice knows a rational function z = s/t ∈ F (X), where s and t

are polynomials with deg(s) < deg(t), and tells Bob some of the high-order
coefficients of the reversed formal Laurent series (see §17.7) representing z
in F ((X−1)). We shall show that if deg(t) ≤ M and Bob is given the bound
M on deg(t), along with the high-order 2M coefficients of z, then Bob can
determine z, expressed as a rational function in lowest terms.

So suppose that z = s/t =
∑∞

i=1 ziX
−i, and that Alice tells Bob the

coefficients z1, . . . , z2M . Equivalently, Alice gives Bob the polynomial

y := z1X
2M−1 + · · ·+ z2M−1X + z2M = bzX2Mc.

Let us define n := X2M , so that y = bznc. Here is Bob’s algorithm for
recovering z:

1. Run the extended Euclidean algorithm on inputs a := n and b := y,
and let s′, t′ be as in Theorem 18.7, using r∗ := M and t∗ := M .

2. Output s′, t′.

We claim that z = −s′/t′. To prove this, observe that since y = bznc =
b(ns)/tc, if we set r := (ns) mod t, then we have

r = sn− ty, deg(r) < r∗, 0 ≤ deg(t) ≤ t∗, and r∗ + t∗ ≤ deg(n).

414 Polynomial arithmetic and applications

It follows that the polynomials s′, t′ from Theorem 18.7 satisfy s = s′α and
−t = t′α for some non-zero polynomial α. Thus, s′/t′ = −s/t, which proves
the claim.

We may further observe that since the extended Euclidean algorithm guar-
antees that gcd(s′, t′) = 1, not only do we obtain z, but we obtain z expressed
as a fraction in lowest terms.

It is clear that this algorithm takes O(M2) operations in F .

The following exercises are the polynomial analogs of Exercises 4.7, 4.9,
and 4.10.

Exercise 18.11. Let F be a field. Show that given polynomials s, t ∈
F [X] and integer k, with deg(s) < deg(t) and k > 0, we can compute the
kth coefficient in the reversed formal Laurent series representing s/t using
O(len(k) len(t)2) operations in F .

Exercise 18.12. Let F be a field. Let z ∈ F ((X−1)) be a reversed formal
Laurent series whose coefficient sequence is ultimately periodic. Show that
z ∈ F (X).

Exercise 18.13. Let F be a field. Let z = s/t, where s, t ∈ F [X], deg(s) <
deg(t), and gcd(s, t) = 1. Let d > 1 be an integer.

(a) Show that if F is finite, there exist integers k, k′ such that 0 ≤ k < k′

and sdk ≡ sdk′ (mod t).

(b) Show that for integers k, k′ with 0 ≤ k < k′, the sequence of coef-
ficients of the reversed Laurent series representing z is (k, k′ − k)-
periodic if and only if sdk ≡ sdk′ (mod t).

(c) Show that if F is finite and X - t, then the reversed Laurent series rep-
resenting z is purely periodic with period equal to the multiplicative
order of [X]t ∈ (F [X]/(t))∗.

(d) More generally, show that if F is finite and t = Xkt′, with X - t′,
then the reversed Laurent series representing z is ultimately periodic
with pre-period k and period equal to the multiplicative order of
[X]t′ ∈ (F [X]/(t′))∗.

18.5.3 Applications to symbolic algebra

Rational function reconstruction has applications in symbolic algebra, anal-
ogous to those discussed in §4.5.3. In that section, we discussed the appli-
cation of solving systems of linear equations over the integers using rational

18.6 Faster polynomial arithmetic (∗) 415

reconstruction. In exactly the same way, one can use rational function re-
construction to solve systems of linear equations over F [X]—the solution to
such a system of equations will be a vector whose entries are elements of
F (X), the field of rational functions.

18.6 Faster polynomial arithmetic (∗)
The algorithms discussed in §3.5 for faster integer arithmetic are easily
adapted to polynomials over a ring. Throughout this section, R denotes
a non-trivial ring.

Exercise 18.14. State and re-work the analog of Exercise 3.32 for R[X].
Your algorithm should multiply two polynomials over R of length at most `
using O(`log2 3) operations in R.

It is in fact possible to multiply polynomials over R of length at most `
using O(` len(`) len(len(`))) operations in R—we shall develop some of the
ideas that lead to such a result below in Exercises 18.23–18.26 (see also the
discussion in §18.7).

In Exercises 18.15–18.21 below, assume that we have an algorithm that
multiplies two polynomials over R of length at most ` using at most M(`)
operations in R, where M is a well-behaved complexity function (as defined
in §3.5).

Exercise 18.15. State and re-work the analog of Exercise 3.34 for R[X].

Exercise 18.16. This problem is the analog of Exercise 3.35 for R[X]. Let
us first define the notion of a “floating point” reversed formal Laurent series
ẑ, which is represented as a pair (a, e), where a ∈ R[X] and e ∈ Z — the
value of ẑ is aXe ∈ R((X−1)), and we call len(a) the precision of ẑ. We
say that ẑ is a length k approximation of z ∈ R((X−1)) if ẑ has precision
k and ẑ = (1 + ε)z for ε ∈ R((X−1)) with deg(ε) ≤ −k, which is the same
as saying that the high-order k coefficients of ẑ and z are equal. Show
how to compute — given monic b ∈ R[X] and positive integer k— a length
k approximation of 1/b ∈ R((X−1)) using O(M(k)) operations in R. Hint:
using Newton iteration, show how to go from a length t approximation
of 1/b to a length 2t approximation, making use of just the high-order 2t
coefficients of b, and using O(M(t)) operations in R.

Exercise 18.17. State and re-work the analog of Exercise 3.36 for R[X].
Assume that b is a monic polynomial.

Exercise 18.18. State and re-work the analog of Exercise 3.37 for R[X].

416 Polynomial arithmetic and applications

Conclude that a polynomial of length ` can be evaluated at ` points using
O(M(`) len(`)) operations in R.

Exercise 18.19. State and re-work the analog of Exercise 3.38 for R[X],
assuming that R is a field of odd characteristic.

Exercise 18.20. State and re-work the analog of Exercise 3.40 for R[X].
Assume that 2R ∈ R∗.

The next two exercises develop a useful technique known as Kronecker
substitution.

Exercise 18.21. Let E := R[X]. Let a, b ∈ E[Y] with a =
∑m−1

i=0 aiYi and
b =

∑m−1
i=0 biYi, where each ai and bi is a polynomial in X of degree less

than k. The product c := ab ∈ E[Y] may be written c =
∑2m−2

i=0 ciYi, where
each ci is a polynomial in X. Show how to compute c, given a and b, using
O(M(km)) operations in R. Hint: for an appropriately chosen integer t > 0,
first convert a, b to ã, b̃ ∈ R[X], where ã :=

∑m−1
i=0 aiXti and b̃ :=

∑m−1
i=0 biXti;

next, compute c̃ := ãb̃ ∈ R[X]; finally, “read off” the values ci from the
coefficients of c̃.

Exercise 18.22. Assume that `-bit integers can be multiplied in time
M̄(`), where M̄ is a well-behaved complexity function. Let a, b ∈ Z[X] with
a =

∑m−1
i=0 aiXi and b =

∑m−1
i=0 biXi, where each ai and bi is a non-negative

integer, strictly less than 2k. The product c := ab ∈ Z[X] may be written
c =

∑2m−2
i=0 ciXi, where each ci is a non-negative integer. Show how to com-

pute c, given a and b, using O(M̄((k + len(m))m)) operations in R. Hint:
for an appropriately chosen integer t > 0, first convert a, b to ã, b̃ ∈ Z, where
ã :=

∑m−1
i=0 ai2ti and b̃ :=

∑m−1
i=0 bi2ti; next, compute c̃ := ãb̃ ∈ Z; finally,

“read off” the values ci from the bits of c̃.

The following exercises develop an important algorithm for multiplying
polynomials in almost-linear time. For integer n ≥ 0, let us call ω ∈ R a
primitive 2nth root of unity if n ≥ 1 and ω2n−1

= −1R, or n = 0 and
ω = 1R; if 2R 6= 0R, then in particular, ω has multiplicative order 2n. For
n ≥ 0, and ω ∈ R a primitive 2nth root of unity, let us define the R-linear
map En,ω : R×2n → R×2n

that sends the vector (g0, . . . , g2n−1) to the vector
(g(1R), g(ω), . . . , g(ω2n−1)), where g :=

∑2n−1
i=0 giXi ∈ R[X].

Exercise 18.23. Suppose 2R ∈ R∗ and ω ∈ R is a primitive 2nth root of
unity.

(a) Let k be any integer, and consider gcd(k, 2n), which must be of the

18.6 Faster polynomial arithmetic (∗) 417

form 2m for some m = 0, . . . , n. Show that ωk is a primitive 2n−mth
root of unity.

(b) Show that if n ≥ 1, then ω − 1R ∈ R∗.
(c) Show that ωk − 1R ∈ R∗ for all integers k 6≡ 0 (mod 2n).

(d) Show that for any integer k, we have

2n−1∑
i=0

ωki =
{

2n
R if k ≡ 0 (mod 2n),

0R if k 6≡ 0 (mod 2n).

(e) Let M2 be the 2-multiplication map on R×2n
, which is a bijective,

R-linear map. Show that

En,ω ◦ En,ω−1 = Mn
2 = En,ω−1 ◦ En,ω,

and conclude that En,ω is bijective, withM−n
2 ◦En,ω−1 being its inverse.

Hint: write down the matrices representing the maps En,ω and En,ω−1 .

Exercise 18.24. This exercise develops a fast algorithm, called the fast
Fourier transform or FFT, for computing the function En,ω. This is
a recursive algorithm FFT (n, ω; g0, . . . , g2n−1) that takes as inputs integer
n ≥ 0, a primitive 2nth root of unity ω ∈ R, and elements g0, . . . , g2n−1 ∈ R,
and runs as follows:

if n = 0 then
return g0

else
(α0, . . . , α2n−1−1)← FFT (n− 1, ω2; g0, g2, . . . , g2n−2)
(β0, . . . , β2n−1−1)← FFT (n− 1, ω2; g1, g3, . . . , g2n−1)
for i← 0 to 2n−1 − 1 do

γi ← αi + βiω
i, γi+2n−1 ← αi − βiω

i

return (γ0, . . . , γ2n−1)

Show that this algorithm correctly computes En,ω(g0, . . . , g2n−1) using
O(2nn) operations in R.

Exercise 18.25. Assume 2R ∈ R∗. Suppose that we are given two polyno-
mials a, b ∈ R[X] of length at most `, along with a primitive 2nth root of unity
ω ∈ R, where 2` ≤ 2n < 4`. Let us “pad” a and b, writing a =

∑2n−1
i=0 aiXi

and b =
∑2n−1

i=0 biXi, where ai and bi are zero for i ≥ `. Show that the follow-
ing algorithm correctly computes the product of a and b using O(` len(`))
operations in R:

418 Polynomial arithmetic and applications

(α0, . . . , α2n−1)← FFT (n, ω; a0, . . . , a2n−1)
(β0, . . . , β2n−1)← FFT (n, ω; b0, . . . , b2n−1)
(γ0, . . . , γ2n−1)← (α0β0, . . . , α2n−1β2n−1)
(c0, . . . , c2n−1)← 2−n

R FFT (n, ω−1; γ0, . . . , γ2n−1)
output

∑2`−2
i=0 ciXi

Also, argue more carefully that the algorithm performs O(` len(`)) addi-
tions/subtractions in R, O(` len(`)) multiplications in R by powers of ω,
and O(`) other multiplications in R.

Exercise 18.26. Assume 2R ∈ R∗. In this exercise, we use the FFT to
develop an algorithm that multiplies polynomials over R of length at most
` using O(` len(`)β) operations in R, where β is a constant. Unlike as in
the previous exercise, we do not assume that R contains any particular
primitive roots of unity; rather, the algorithm will create them “out of thin
air.” Suppose that a, b ∈ R[X] are of length at most `. Set k := b

√
`/2c,

m := d`/ke. We may write a =
∑m−1

i=0 aiXki and b =
∑m−1

i=0 biXki, where
the ai and bi are polynomials of length at most k. Let n be the integer
determined by 2m ≤ 2n < 4m. Let f := X2n−1

+ 1R ∈ R[X], E := R[X]/(f),
and ω := [X]f ∈ E.

(a) Show that ω is a primitive 2nth root of unity in E, and that given an
element δ ∈ E and an integer i between 0 and 2n−1, we can compute
δωi ∈ E using O(`1/2) operations in R.

(b) Let ā :=
∑m−1

i=0 [ai]fYi ∈ E[Y] and b̄ :=
∑m−1

i=0 [bi]fYi ∈ E[Y]. Using
the FFT (over E), show how to compute c̄ := āb̄ ∈ E[Y] by computing
O(`1/2) products in R[X] of polynomials of length O(`1/2), along with
O(` len(`)) additional operations in R.

(c) Show how to compute the coefficients of c := ab ∈ R[X] from the
value c̄ ∈ E[Y] computed in part (b), using O(`) operations in R.

(d) Based on parts (a)–(c), we obtain a recursive multiplication algo-
rithm: on inputs of length at most `, it performs at most α0` len(`)
operations in R, and calls itself recursively on at most α1`

1/2 sub-
problems, each of length at most α2`

1/2; here, α0, α1 and α2 are
constants. If we just perform one level of recursion, and immediately
switch to a quadratic multiplication algorithm, we obtain an algo-
rithm whose operation count is O(`1.5). If we perform two levels of
recursion, this is reduced to O(`1.25). For practical purposes, this is
probably enough; however, to get an asymptotically better complex-
ity bound, we can let the algorithm recurse all the way down to inputs
of some (appropriately chosen) constant length. Show that if we do

18.6 Faster polynomial arithmetic (∗) 419

this, the operation count of the recursive algorithm is O(` len(`)β) for
some constant β (whose value depends on α1 and α2).

The approach used in the previous exercise was a bit sloppy. With a bit
more care, one can use the same ideas to get an algorithm that multiplies
polynomials over R of length at most ` using O(` len(`) len(len(`))) opera-
tions in R, assuming 2R ∈ R∗. The next exercise applies similar ideas, but
with a few twists, to the problem of integer multiplication.

Exercise 18.27. This exercise uses the FFT to develop a linear-time al-
gorithm for integer multiplication; however, a rigorous analysis depends on
an unproven conjecture (which follows from a generalization of the Riemann
hypothesis). Suppose we want to multiply two `-bit, positive integers a and b
(represented internally using the data structure described in §3.3). Through-
out this exercise, assume that all computations are done on a RAM, and
that arithmetic on integers of length O(len(`)) takes time O(1). Let k be an
integer parameter with k = Θ(len(`)), and let m := d`/ke. We may write
a =

∑m−1
i=0 ai2ki and b =

∑m−1
i=0 bi2ki, where 0 ≤ ai < 2k and 0 ≤ bi < 2k.

Let n be the integer determined by 2m ≤ 2n < 4m.

(a) Assuming Conjecture 5.24 (and the result of Exercise 5.22), and as-
suming a deterministic, polynomial-time primality test (such as the
one to be presented in Chapter 22), show how to efficiently generate
a prime p ≡ 1 (mod 2n) and an element ω ∈ Z∗p of multiplicative
order 2n, such that

22km < p ≤ `O(1).

Your algorithm should be probabilistic, and run in expected time
polynomial in len(`).

(b) Assuming you have computed p and ω as in part (a), let ā :=∑m−1
i=0 [ai]pXi ∈ Zp[X] and b̄ :=

∑m−1
i=0 [bi]pXi ∈ Zp[X], and show how

to compute c̄ := āb̄ ∈ Zp[X] in time O(`) using the FFT (over Zp).
Here, you may store elements of Zp in single memory cells, so that
operations in Zp take time O(1).

(c) Assuming you have computed c̄ ∈ Zp[X] as in part (b), show how to
obtain c := ab in time O(`).

(d) Conclude that assuming Conjecture 5.24, we can multiply two `-bit
integers on a RAM in time O(`).

Note that even if one objects to our accounting practices, and insists on
chargingO(len(`)2) time units for arithmetic on numbers of lengthO(len(`)),

420 Polynomial arithmetic and applications

the algorithm in the previous exercise runs in time O(` len(`)2), which is
“almost” linear time.

Exercise 18.28. Continuing with the previous exercise:

(a) Show how the algorithm presented there can be implemented on a
RAM that has only built-in addition, subtraction, and branching
instructions, but no multiplication or division instructions, and still
run in time O(`). Also, memory cells should store numbers of length
at most len(`) + O(1). Hint: represent elements of Zp as sequences
of base-2t digits, where t ≈ α len(`) for some constant α < 1; use
table lookup to multiply t-bit numbers, and to perform 2t-by-t-bit
divisions—for α sufficiently small, you can build these tables in time
o(`).

(b) Using Theorem 5.25, show how to make this algorithm fully deter-
ministic and rigorous, provided that on inputs of length `, it is pro-
vided with a certain bit string σ` of length O(len(`)) (this is called a
non-uniform algorithm).

Exercise 18.29. This exercise shows how the algorithm in Exercise 18.27
can be made quite concrete, and fairly practical, as well.

(a) The number p := 25927 + 1 is a 64-bit prime. Show how to use this
value of p in conjunction with the algorithm in Exercise 18.27 with
k = 20 and any value of ` up to 227.

(b) The numbers p1 := 2303 + 1, p2 := 22813 + 1, and p3 := 22729 + 1
are 32-bit primes. Show how to use the Chinese remainder theorem
to modify the algorithm in Exercise 18.27, so that it uses the three
primes p1, p2, p3, and so that it works with k = 32 and any value of
` up to 231. This variant may be quite practical on a 32-bit machine
with built-in instructions for 32-bit multiplication and 64-by-32-bit
division.

The previous three exercises indicate that we can multiply integers in
essentially linear time, both in theory and in practice. As mentioned in §3.6,
there is a different, fully deterministic and rigorously analyzed algorithm
that multiplies integers in linear time on a RAM. In fact, that algorithm
works on a very restricted type of machine called a “pointer machine,” which
can be simulated in “real time” on a RAM with a very restricted instruction
set (including the type in the previous exercise). That algorithm works with
finite approximations to complex roots of unity, rather than roots of unity
in a finite field.

18.7 Notes 421

We close this section with a cute application of fast polynomial multipli-
cation to the problem of factoring integers.

Exercise 18.30. Let n be a large, positive integer. We can factor n using
trial division in time n1/2+o(1); however, using fast polynomial arithmetic
in Zn[X], one can get a simple, deterministic, and rigorous algorithm that
factors n in time n1/4+o(1). Note that all of the factoring algorithms dis-
cussed in Chapter 16, while faster, are either probabilistic, or deterministic
but heuristic. Assume that we can multiply polynomials in Zn[X] of length
at most ` using M(`) operations in Zn, where M is a well-behaved complex-
ity function, and M(`) = `1+o(1) (the algorithm from Exercise 18.26 would
suffice).

(a) Let ` be a positive integer, and for i = 1, . . . , `, let

ai :=
`−1∏
j=0

(i`− j) mod n.

Using fast polynomial arithmetic, show how to compute all of the
integers a1, . . . , a` in time `1+o(1) len(n)O(1).

(b) Using the result of part (a), show how to factor n in time n1/4+o(1)

using a deterministic algorithm.

18.7 Notes

Exercise 18.4 is based on an algorithm of Brent and Kung [20]. Using fast
matrix arithmetic, Brent and Kung show how this problem can be solved
using O(`(ω+1)/2) operations in R, where ω is the exponent for matrix mul-
tiplication (see §15.6), and so (ω + 1)/2 < 1.7.

The interpretation of Lagrange interpolation as “secret sharing” (see
§18.4.2), and its application to cryptography, was made by Shamir [85].

Reed–Solomon codes were first proposed by Reed and Solomon [77], al-
though the decoder presented here was developed later. Theorem 18.7 was
proved by Mills [64]. The Reed–Solomon code is just one way of detecting
and correcting errors—we have barely scratched the surface of this subject.

Just as in the case of integer arithmetic, the basic “pencil and paper”
quadratic-time algorithms discussed in this chapter for polynomial arith-
metic are not the best possible. The fastest known algorithms for multipli-
cation of polynomials of length ` over a ring R take O(` len(`) len(len(`)))
operations in R. These algorithms are all variations on the basic FFT al-
gorithm (see Exercise 18.25), but work without assuming that 2R ∈ R∗ or

422 Polynomial arithmetic and applications

that R contains any particular primitive roots of unity (we developed some
of the ideas in Exercise 18.26). The Euclidean and extended Euclidean al-
gorithms for polynomials over a field F can be implemented so as to take
O(` len(`)2 len(len(`))) operations in F , as can the algorithms for Chinese
remaindering and rational function reconstruction. See the book by von
zur Gathen and Gerhard [37] for details (as well for an analysis of the Eu-
clidean algorithm for polynomials over the field of rational numbers and
over function fields). Depending on the setting and many implementation
details, such asymptotically fast algorithms for multiplication and division
can be significantly faster than the quadratic-time algorithms, even for quite
moderately sized inputs of practical interest. However, the fast Euclidean
algorithms are only useful for significantly larger inputs.

